Universität Karlsruhe (TH)
 Low-frequency limit for H / V studies due to tilt

CRC 461 Strong Earthqua Strong Earthquakes: A Challenge for

 A Challenge forGeosciences and
Civil Engnineering

Thomas Forbriger

Geophysical Institute, University of Karlsruhe

and

Black Forest Observatory (BFO)
Research facility of the Universities of Karlsruhe and Stuttgart, Heubach 206, D-77709 Wolfach

1 Low-frequency H/V peak

Throughout the data recorled during the URS project (Ritite e tal. 2005) in Bucharest city, we
 systematically varies trom lower frequencies in the north to ihgher frequencies in the south. This
variation is beilieved to be caused by the dippoing of the interacee between the Neogene and
 unstable and strongly rises with decreasing frequency in the recordings of most stations. This
puts an effective limit on the analysis of the peak at frequencies below 0.2 Hz (Fiq. 1 . Since

 courresy of fulia Zieiem

2 Forces acting on inertial sensors

Inerial sensors (gravimeters, seismometers and titmeters) sense ineritial and gravitational ac
celeration. Due to the equivalence of ineritial and gravitational mass they are orincipally unable eeleration. Due to the equivalence of inertial and gravitational mass they are principally unable oo distingulish between both (Weian
horizontal d direction is
vertical direction, where $a_{h}=\frac{\partial t^{2}}{\partial t^{2}}$ and $a_{z}=\frac{\partial t^{2}}{\partial t^{2}}$
in vericical direction, where $u_{2}(h, z, t)$ is the vertical component of displacement and $u_{l}(h, z, t)$ the
horizontal component. For smal tit angles the horizontal component of aseismometer siting on the ground additionally senses the acceleration

$$
\begin{equation*}
a_{\tau} \approx \frac{\partial u_{2}}{\partial h} \tag{2}
\end{equation*}
$$

due to ground tit, where g is the gravitational acceleration (Fig. 2).

Tilt has a linear contribution

$$
\Delta a_{\mathrm{h}}=g \sin (\tau) \approx g \tau
$$ to the horizontal components ac

celeration while is contribution $\Delta a_{=}=g(1-\cos (\tau)) \widetilde{\tau}_{\tau^{2}}{ }^{(4)}$ to the verical. component is of
seconod order For this eason the
effect sull effect usually is only significantiig
the horizontal components sig
nal

[^0]| If $\tilde{a}_{z}, \tilde{a}_{h}$, and \tilde{a}_{t} are the Fourier transforms of a_{z}, a_{k}, and a_{t}, respectively, the Fourier transform of the seismometer's vertical component output signal is | |
| :---: | :---: |
| $\hat{s}_{z}(\omega)=T(\omega) \tilde{a}_{z}(\omega)$, | (5) |
| where $T(\omega)$ is the instruments complex response function. And | |
| $\tilde{s}_{h}(\omega)=T(\omega)\left(\tilde{a}_{h}(\omega)+\tilde{a}_{t}(\omega)\right)$ | |
| the horizontal component's output signal. | |

3 Tilt contribution to H / V ratio

HV ratio is calculated from seismic recordings usually by

$$
\begin{equation*}
A_{H v}(\omega)==\frac{\left|\tilde{s}_{k}(\omega)\right|}{\left|\bar{z}_{z}(\omega)\right|}=\frac{\left|\tilde{a}_{h}(\omega)+\tilde{a}_{k}(\omega)\right|}{\left|\tilde{z}_{z}(\omega)\right|} \tag{7}
\end{equation*}
$$

and averaging over signals from several time windows. Hence the $H /$ ratio contains a till contribution, which may be ignored at high frequencies
freauencies the tilt contribution can dominate $A+$.

4 Point load on an elastic halfspace

The elastic deformation of a homogeneous haltspace due to a staicic point load is known as the Beossinesuae solution" in the
to Boussinesauel's rooblem is

$$
u_{z}(r, z)=-\frac{F}{4 \pi \mu} \frac{1}{R}\left(\frac{\lambda+2 \mu}{\lambda+\mu}+\frac{z^{2}}{R^{2}}\right)
$$(8)

$$
u_{r}(r, z)=-\frac{F}{4 \pi(\lambda+\mu)} \frac{1}{r}\left(1+\frac{z}{R}+\frac{\lambda+\mu r^{2} z^{2}}{\mu} R^{3}\right)
$$

(9)

Cor the horizontal component. It is given in cylindrical coordinates with the radial coordinate
$\sqrt{x^{2}+y^{2}}$ and the spacial distance $R=\sqrt{r^{2}+z^{2}}$ to to to load. The oading force at the origin is

$$
\begin{equation*}
\vec{f}=-F \delta(\vec{x}) \hat{e}_{2} \tag{10}
\end{equation*}
$$

and λ and μ are Lamés parameters for the homogeneous haltspace at $z<0$.

deiermaion is instantaneous (quasistait). A seismometer on the surface is it tied.

For observations at the surface of the elastic haltspace I simply obtai

$$
u_{z}(r, z=0)=-\frac{F}{4 \pi \mu} \mu \frac{1 \lambda+2 \mu}{\lambda+\mu}
$$

for the vertical component and

$$
u_{r}(r, z=0)=-\frac{F}{4 \pi(\lambda+\mu)}
$$

(12)

For $F(t)$ varying with time eqs. (11) and (12) are the near-fied solution. In this case the seis-

$$
\begin{aligned}
& a_{z}(t, r, z=0)=-\frac{F}{F}(t) \frac{\lambda+2 \mu}{4 \pi \mu}(\lambda \mu \mu \\
& a_{h}(t, r, z=0)=-\frac{F}{F}(t) \\
& \hline 4 \pi(\lambda+\mu)
\end{aligned}
$$

$$
\begin{align*}
a_{\mathrm{c}}(t, r, z=0) & =g \frac{\partial u_{z}(t, r, z)}{\partial r} \tag{15}\\
& =\frac{F F(t)}{r^{2}} \frac{\lambda+2 \mu}{4 \pi \mu(\lambda+\mu)} .
\end{align*}
$$

Using eq. (7) I obtain

$$
\begin{equation*}
A_{\mathrm{HI}}(\omega)=\frac{\mu}{\lambda+2 \mu}+\frac{g}{r \omega^{2}} \tag{17}
\end{equation*}
$$

$$
\text { for the effect of the point load in the HV analysis. While it is constant and less than } 1 \text { with }
$$

$$
\lim _{\omega \rightarrow \infty} A \operatorname{AIV}(\omega)=\frac{\mu}{\lambda+2 \mu}
$$

at high requencies, its contributio

$$
\begin{equation*}
\lim _{\omega \rightarrow 0} A H v(\omega)=\frac{g}{r \omega^{2}} \tag{19}
\end{equation*}
$$

is increasing with decreasing frequency.
Consider a point load a $r=10 \mathrm{~m}$ distance, with $\lambda=\mu$ in the halispace and $g=9.81 \mathrm{~ms}^{-2}$. Then the titc contribution is larger than 2 at fiequencies less than 0.11 Hz and is ifely to mask HV peaks produced by surface wave ellipicicity (Fig. 4 .

5 Propagating Rayleigh wave

The surface displacement of a plane Raylieigh wave (Fig. 5) is
$u_{z}(r, t)=A(\omega) \sin (k(\omega) r-\omega t)$
and
$u_{r}(r, t)=A(\omega) \varepsilon(\omega) \cos (k(\omega) r-\omega t)$,
(21)
with the ellipiticity $\varepsilon(\omega)$, where $\varepsilon<0$ tor prograde waves and $\varepsilon>0$ tor retrograde waves.

The seismometer senses
$a_{a}(r, t)=-\omega^{2} A(\omega) \sin (k(\omega) r-\omega t$,

$$
A_{\text {Hiv }}(\omega)=\left|\frac{g}{\omega c(\omega)}-\varepsilon(\omega)\right|,
$$

$$
{ }^{(25)}
$$

in the H / V analysis, where $c(\omega)=\omega / k(\omega)$ is the phase velocity. If $\varepsilon(\omega)$ and $c(\omega)$ are bounded,
the HV ratio $\quad \lim _{\omega \rightarrow \infty} A$ Hv($(\omega)=|\varepsilon(\omega)| \quad$ (26)
rovides the ellipticity a thigh trequencies (as is expected) but is likely to increase with decreasing
requency at the low-requenency lim

$$
\begin{equation*}
\lim _{\omega \rightarrow 0} A \operatorname{Hv}(\omega)=\frac{g}{\omega c(\omega)} . \tag{27}
\end{equation*}
$$

Ineriial and tilt contribution cancel at $\quad \omega_{C}=\frac{g}{\varepsilon_{c}}$
for retrograde waves.
For a surface wave with $c=2000 \mathrm{~ms}^{-1}, \varepsilon=0.67$, and $g=9.81 \mathrm{~ms}^{-2}$

$$
\omega_{c}=2 \pi \cdot 1.2 \cdot \cdot 10^{-3} \frac{1}{s} .
$$

elow 1.2 mHz the ilif efiect dominales over he
decreasing freauency.
The treauencies for w
The riequencies for which A Av >1 due to the till contribution are not significant for our H / V
 ditions (where phase velocilit
tree mode (osel of the earth

Figure 6 : HV ratio predicted by eq. (25) tor surface waves of consant phase velocity cand constantel elipicitity.

6 Conclusions

In urban environments point loads that vary with time (moving venicles, buildings loaded by wind.

 dependence of the effect may explat.
freauencies below 0.1 Hz in Fig. 1 .

References

Main

Acknowledgements

[^0]:

