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Abstract

In the context of seismic observations in the nearfield of the source
or when observing the motion of structures the response of pendulum
seismometers to rotary motion is discussed occasionally. However,
seismometers are insensitive to rotary motion if the output signal is
referred to the location of the point mass of the equivalent simple pen-
dulum. The observation of rotary motion deserves specific sensors
that are insensitive to linear acceleration.

Rigid-body motion

Seismometers are intended to record the displacement of the ground.
The output signal of the seismometer thus must be attributed to the
motion of one point. The choice of this location is arbitrary in cases
where the seismometer undergoes a pure translational displacement.
The displacement of each location on the seismometer’s frame then
is the same as well as the ground’s displacement (Fig. 1). In the pres-
ence of rotations this is no longer the case. Each point on the ex-
tended body undergoes a different displacement while the rotation is
the same for all (Fig. 2). Then a reference location must be defined
to which the output signal is attributed. This reference location needs
not be the hinge of the pendulum nor needs it be the location of the
center of mass, necessarily.

Figure 1: In the absence of rotations all locations in the seismometer’s
reference frame undergo the same displacement. It is not necessary
to define a reference location to which the motion is attributed.

Figure 2: In the presence of rotations all locations in the seismome-
ter’s reference frame undergo a different displacement. To quantify
displacement, a reference location must be defined. The angle of ro-
tation about this reference location is independent of the choice made.
Translational displacement depends on the reference location and
vanishes if the center of rotation is selected as reference.

Reference location

In this study I discuss the output signal of a pendulum seismometer
in response to the motion of its frame. I use a simple model of the
seismometer consisting of a casing (green rectangle in Fig. 3), a pen-
dulum (blue body) with its center of mass at S and being attached to
the casing by a hinge at H. I study the response of the seismometer
to a motion of the reference location R on the seismometer’s frame.
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Figure 3: A simple model for a single seismic sensor. The green rect-
angle represents the frame of the seismometer that moves rigidly with
the ground. The blue body represents the seismometer’s pendulum
which constitutes the seismic mass with finite moment of inertia. The
center of mass is located at S. The pendulum is attached to the frame
by a hinge at H which constrains the motion of the pendulum to a
single degree of freedom, i.e. a rotation centered on H. R defines the
reference location to which motions of the seismometer’s frame are
referred to. Without loss of generality all motions are restricted to the
(x,y)-plane.

Referring to the point mass of
the equivalent simple pendulum

Fig. 4a is a sketch of the pendulum seismometer with the reference lo-
cation R placed at the location of the point mass of the equivalent sim-
ple pendulum. The equivalent simple pendulum has the whole mass of
the suspended body concentrated in a point mass and has the same
free period in a gravity field. This concept is known as ’the reduced
pendulum’ in the theory of the reversible pendulum (Rodgers 1969;
Leybold 2007). The location of the point mass of the equivalent sim-
ple pendulum is sometimes referred to as ’center of oscillation’ (Byerly
1952). The point mass of the equivalent simple pendulum is displaced
from the hinge at H by

lesp = l +
JS

ml
(1)

along the line connecting H and the center of mass at S. Here l is the
distance between H and S, m is the mass of the pendulum and JS is
its angular momentum for rotations about S.
When turning the seismometer about this location, there will be no
deflection of the pendulum with respect to the frame. The seismome-
ter consequently is insensitive for rotations about this location and will
only sense translational displacement of the location of the point mass
of its equivalent simple pendulum. This can be understood by simple
physical considerations when balancing the desire to preserve angular
and linear momentum at the same time for rotations about locations on
the line connecting H and S. This result will also be rigorously derived
below from the pendulum’s equation of motion.
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Figure 4: Rotary motion of the seismometer. a) The seismometer in
its reference position with the pendulum in its rest position. b) Motion
of the seismometer and pendulum in the special case of a rotation of
the frame by an angle α centered on the location of the point mass of
the equivalent simple pendulum. It turns out that ϕ̈ = α̈ if the distance
HR equals the length of the equivalent simple pendulum.

Equation of motion

The geometrical quantities used for the mathematical treatment are
defined in Fig. 5. The Lagrangian of the seismometer’s pendulum is

L =
1
2

m
(
ṡ2

x + ṡ2
y

)
+

1
2

JS ϕ̇
2, (2)

where sx and sy are components of the location vector

s(t) = r(t)−af̂1(α(t))+ lp̂‖(ϕ(t)) (3)

to the center of mass at S and r is the location vector to the reference
location R to which the output signal is attributed. Lagrange’s equation

d
dt

∂L
∂ϕ̇
− ∂L

∂ϕ
= 0 (4)

results in the equation of motion

ml
(
r̈ p̂⊥−a α̈ f̂2p̂⊥+a α̇

2 f̂1p̂⊥
)
+
(
ml2 + JS

)
ϕ̈ = 0 (5)

after a few pages of calculus. With

β = ϕ−α, f̂2p̂⊥ = cosβ, and f̂1p̂⊥ =−sinβ (6)

I obtain(
ml2 + JS

)︸ ︷︷ ︸
=JH

β̈

=−ml r̈ p̂⊥+ml α̈

(
a cosβ︸ ︷︷ ︸

=a‖

−
(

l +
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ml

)
︸ ︷︷ ︸

=lesp

)
+ml α̇

2 a sinβ︸ ︷︷ ︸
=a⊥

, (7)

where β is the quantity observed by the transducer.
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Figure 5: The geometry of the seismometer is defined by the locations
of the center of mass of the pendulum’s body at S, the hinge at H, and
the reference point R on the frame. The response of the seismome-
ter’s pendulum to a translational displacement of R and a rotation of
the frame centered on R is discussed. With respect to inertial space,
ϕ defines the orientation of the pendulum and α defines that of the
seismometer’s frame. β = ϕ−α is the angle that is observed by the
transducer in the seismometer. Distances l = HS and a = HR are
constant and are displayed by thick lines. The unit vector in direction
of the line connecting H and R is f̂1 and f̂2 is the unit vector perpen-
dicular to it. They are base vectors of a coordinate system that moves
and turns with the frame. Similarly p̂‖ and p̂⊥ are unit vectors parallel
and perpendicular to the line connecting H and S. They are base vec-
tors of a coordinate system that moves and turns with the pendulum.
Components a‖ and a⊥ of the vector from H to R in the pendulum’s
coordinate system are displayed by dash-dotted lines and are parallel
and perpendicular to p̂‖ respectively.

Sensitivity

I understand the pendulum to be held in its reference position by a
feedback such that a‖ and a⊥ are constant. By solving eq. (7) for β I
derive the expression

β̈ =− 1
lesp

( 1©
r̈⊥

2©

+α̈
(
lesp−a‖

) 3©

−α̇
2 a⊥
)

(8)

for the sensitivity of the pendulum. The three terms on the right-hand-
side of eq. (8) are the contributions for three types of motion.

1© translational acceleration
r̈⊥ is the amount of translational acceleration of R in the sensitive
direction p̂⊥ of the pendulum. In the absence of rotary motion
(α̈ = 0 and α̇ = 0) it may be replaced by the linear acceleration
of any other location on the seismometer’s frame, e.g. ḧ⊥ for the
hinge. This is the way seismometers usually are understood (by
ignoring rotations). If g is the vector of gravity, then the effect of
ground tilt can seamlessly be introduced into eq. (8) when re-
placing r̈⊥ by r̈⊥−gp̂⊥.

2© angular acceleration
α̈ is the angular acceleration of the seismometer’s frame. It is
scaled by (lesp−a‖). Hence its contribution vanishes for a‖= lesp.

3© centripetal acceleration
−α̇2 a⊥ is the centripetal acceleration acting due to a rotation
about R. This contribution obviously vanishes for a⊥ = 0.

Conclusions

If the output signal is referred to the location of the point mass of the
equivalent simple pendulum, i.e. R is chosen such that a‖ = lesp and
a⊥ = 0, then

β̈ =− r̈⊥
lesp

(9)

for any motion. Hence the seismometer is only sensitive to the trans-
lational acceleration of the location of the point mass of the equiva-
lent simple pendulum. When ignoring the rotary component of motion
and using eq. (9) to understand the output signal of the conventional
seismometer we ignore that its sensitive axis p̂⊥ points to a different
direction when being rotated. The relative error in the interpretation of
the output signal is

∆r̈⊥
r̈⊥

= cos∆α−1−
r̈‖
r̈⊥

sin∆α (10)

and can safely be ignored, since in most cases ∆α� 1. A sensor for
rotary motion must be constructed such that H and S coincide. Then
always

β̈ =−α̈. (11)
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